Distributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements

نویسندگان

  • M. Farhid Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran.
  • M. H. Sedaaghi Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran.
  • M. Shamsi Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran.
چکیده مقاله:

Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defined based on previously calculated signal to noise ratio (SNR), is assumed to be the informed nodes that collect data and perform in-network processing, while the remaining nodes are assumed to be uninformed and only participate in the processing tasks. As our simulation results show, the proposed algorithm not only considerably improves the performance of the Distributed Incremental LMS algorithm in a same condition, but also proves a good accuracy of estimation in cases where some of the nodes make unreliable observations (noisy nodes). Also studied is the application of the same algorithm on the cases where node failure happens

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Regularization Parameter Normalized Least Mean Square Adaptive Filter

We present a normalized LMS (NLMS) algorithm with robust regularization. Unlike conventional NLMS with the fixed regularization parameter, the proposed approach dynamically updates the regularization parameter. By exploiting a gradient descent direction, we derive a computationally efficient and robust update scheme for the regularization parameter. In simulation, we demonstrate the proposed al...

متن کامل

A Diffusion Least-Mean Square Algorithm for Distributed Estimation over Sensor Networks

In this paper we consider the issue of distributed adaptive estimation over sensor networks. To deal with more realistic scenario, different variance for observation noise is assumed for sensors in the network. To solve the problem of different variance of observation noise, the proposed method is divided into two phases: I) Estimating each sensor’s observation noise variance and II) using the ...

متن کامل

A New Least Mean Squares Adaptive Algorithm over Distributed Networks Based on Incremental Strategy

This paper applies the new least mean squares (LMS) adaptive algorithm, which is circulantly weighted LMS (CLMS), in distributed networks based on incremental strategy. Thedistributed CLMS (dCLMS) algorithm is optimized with respect to approximate a priori knowledge of input autocorrelation signals from all nodes in the network. In comparison with dLMS, the dCLMS adaptive algorithm has faster c...

متن کامل

Video enhancement using content-adaptive least mean square filters

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version ...

متن کامل

Adaptive Noise Cancellation using Modified Normalized Least Mean Square Algorithm

This paper presents an efficient design of Adaptive filters which uses enhanced NLMS algorithm for eliminating noise added by mean of various communication media or any other noise sources. By using the appropriate weights, Adaptive filter estimates and remove the estimated noise signal from the available information. LMS and Normalized LMS are two most efficient algorithm for noise cancelation...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره 2

صفحات  285- 291

تاریخ انتشار 2017-07-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023